
Design
Compact, secure, peer-to-peer ZRTP
Zorg implements all the mandatory features of the ZRTP protocol, and the following notable optional features:

Secrets cache for key continuity
The SHA-384 hash type
All Diffie–Hellman key agreement types, including all elliptic curve Diffie–Hellman types 
The base256 SAS type
The   SDP attributea=zrtp-hash

Additionally, Zorg supports the following extensions to the ZRTP specification:

Disabling select mandatory algorithms (e.g. disabling mandatory AES-128, only allowing AES-256)
Compatibility with the non-compliant LibZRTP implementation

Support for the following optional features depends on the SRTP implementation used:

The AES-192 and AES-256 cipher types
All TwoFish cipher types
All Skein authentication tag types

In the interest of providing a compact implementation of ZRTP for secure peer-to-peer communications only, Zorg does not implement GoClear/ClearACK, 
nor any proxy or MitM feature.

Modularity
The SRTP implementation and all cryptographic primitives are implemented as modules with an abstract binary interface. Default implementations are 
provided, but any compliant implementation can be substituted, for example:

an alternate open source implementation
the operating system's implementation
a hardware-accelerated implementation
your own implementation

Mobile networks
Zorg lets applications tune the (otherwise hardcoded by the ZRTP specification) retransmission schedule, to meet the requirements of mobile networks.

Mobile platforms
The Java implementation is designed to run with minimal Java API support (it runs on J2ME MIDP 2.0) and to have a very low memory footprint by 
reducing JVM garbage collector runs.

Keep in mind that running VoIP realtime applications in Java on a JVM require extreme care about the garbage collection to avoid 
getting frequent hole in secure audio flow or even mobile phone reboot.


	Design

